DKA
Classification of Diabetes Ketoacidosis

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O₂(mEq/L,venous)</td>
<td>20-28</td>
<td>16-20</td>
<td>10-15</td>
<td><10</td>
</tr>
<tr>
<td>pH (venous)*</td>
<td>7.35-7.45</td>
<td>7.25-7.35</td>
<td>7.15-7.25</td>
<td><7.15</td>
</tr>
<tr>
<td>Clinical</td>
<td>No Change</td>
<td>Oriented, alert but fatigued</td>
<td>Kussmaul respiration; oriented but sleepy; arousable depressed sensorium to coma</td>
<td>Kussmaul or depressed respiration sleepy to coma</td>
</tr>
</tbody>
</table>

* CO₂ and pH measurement are method dependent; normal ranges may vary
* Sever hypermatremia (corrected Na > 150mEq/L would also be classified as severe DKA
Classification of Diabetes Ketoacidosis

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ (mEq/L, venous)</td>
<td>20–28</td>
<td>16–20</td>
<td>10–15</td>
<td><10</td>
</tr>
<tr>
<td>pH (venous)</td>
<td>7.35–7.45</td>
<td>7.25–7.35</td>
<td>7.15–7.25</td>
<td><7.15</td>
</tr>
<tr>
<td>Clinical</td>
<td>No Change</td>
<td>Oriented, alert</td>
<td>Kussmaul respiration;</td>
<td>Kussmaul or depressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>but fatigued</td>
<td>oriented but</td>
<td>respiration sleepy to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sleepy; arousable</td>
<td>depressed sensorium to coma</td>
</tr>
</tbody>
</table>

* CO₂ and pH measurement are method dependent; normal ranges may vary
* Sever hypernatremia (corrected Na > 150 mEq/L would also be classified as severe DKA
Diabetes Ketoacidosis (DKA) Treatment Protocol

<table>
<thead>
<tr>
<th>Time</th>
<th>Therapy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> hour</td>
<td>10-20 ml/kg IV bolus 0.9% NaCl or LR insulin drop at 0.05 to 0.10 µ/kg/hr</td>
<td>Quick volume expansion may be repeated NPO monitor 1/0, neurologic status. Sue flow sheet. Have mannitol at based; 1g/kg IV push for cerebral edema</td>
</tr>
<tr>
<td>2<sup>nd</sup> hour until DKA resolution</td>
<td>0.45% NaCl: plus continue insulin drip 20mEq/L Kphos and 20 mEq/L KAc 5% glucose if blood sugar <250mg/dL (14mmol/L)</td>
<td>85mL/kg+maintenance -bolus IV rate=______________________________ 23 hrs</td>
</tr>
<tr>
<td>Variable</td>
<td>Oral intake</td>
<td></td>
</tr>
</tbody>
</table>
Diabetes Mellitus is a chronic metabolic syndrome characterized by hyperglycemia as a cardinal biochemical feature.

Type 1 - deficiency of insulin secretion
Type 2 - Insulin resistance & various degree of B-cell impairment
Diabetes Ketoacidosis

* End result of metabolic abnormalities resulting from a severe deficiency of insulin or insulin effectiveness

* Occur 20-40% of children
Diabetes Keto Acidosis

* Hyperglycemia
* Ketosis & Ketouria
* PH ↓
* Elevated effective serum abnormality
* Hypertonic dehydration
Investigations:

* Blood Sugar
* Ketones
* S. Electrolytes
* Blood gases
Patient is out of DKA

* PH > 7.35
* HCos > 15
* Na 135-145
* No vomiting
Complications:

* Cerebral Oedema
* Hypoglycemia
* Hypokalcemia
Acute Management of DKA

* Water & sodium replacement
* Potassium replacement
* Correction of acid-base imbalance
* Insulin administration
* Prevention of treatment complication
Management of Diabetes

* Insulin
* Diet
* Exercise / education
* Adequate growth / associated diseases
* Long term complication